THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS 2024 Enrichment Programme for Young Mathematics Talents

TOWARDS DIFFERENTIAL GEOMETRY Test 1, 16/08/2024

Instructions:

- Time allowed: $90 \pm \delta$ minutes.
- This paper consists of Basic Part, Harder Part and Bonus Part.
- The full mark of the paper is **80 points** and bonus mark **15 points**.
- Answer **ALL** questions in Basic Part and **ANY TWO** questions in Harder Part. Make your best effort to answer the Bonus Part.
- Show your work clearly and concisely. Give adequate explanation and justification for your calculation and observation.
- Write your answers in the spaces provided in the Answer Booklet.
- Calculators approved by the HKEAA are allowed.
- Supplementary answer sheets and rough paper will be supplied on request.
- Unless otherwise specified, numerical answers must be exact.

Full Name:	Group:	

Basic Part (50 points). Answer ALL questions in this part.

- 1. Let $\mathbf{u} = (a, -1, 0), \mathbf{v} = (b, -a, b), \mathbf{w} = (2, 1, -1).$ Suppose $\langle \mathbf{u}, (2, 2, 1) \rangle = 0, \|\mathbf{v}\| = 3$ and b > 0.
 - (a) (3 points) Find a and b.
 - (b) (3 points) Show that $\langle \mathbf{w}, \mathbf{u} \times \mathbf{v} \rangle \neq 0$.
 - (c) (2 points) Find the area of the parallelogram spanned by ${\bf u}$ and ${\bf v}$.
 - (d) (3 points) Find the volume of the tetrahedron generated by \mathbf{u}, \mathbf{v} and \mathbf{w} .
 - (e) (3 points) Find the distance between \mathbf{w} and the plane spanned by \mathbf{u} and \mathbf{v} .
- 2. Give a parametrization $\mathbf{r}(t)$ of the following curves, specify the domain so that $\mathbf{r}(t)$ is regular.
 - (a) (3 points) The line segment joining (-5, 2) and (2, 7).
 - (b) (4 points) The circle of radius 3 centered at (7, -5).
 - (c) (4 points) The ellipse $\frac{(x-5)^2}{9} + \frac{(y-3)^2}{8} = 2$.
 - (d) (4 points) The hyperbola $\frac{27x^2}{4} \frac{y^2}{6} = 3$, where x < 0.
- 3. Let $\mathbf{r}(t) = \left(\tan t t, \frac{\tan^2 t}{2} \ln(\sec t)\right)$, $0 < t < \frac{\pi}{4}$, be a curve on the xy-plane.
 - (a) (3 points) Show that $\mathbf{r}(t)$ is a regular parametrized curve.
 - (b) (5 points) Provided that

$$\int \sec^n x dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, \quad 2 \le n \in \mathbb{N}.$$

Find the arclength of $\mathbf{r}(t)$ from t = 0 to $t = \frac{\pi}{4}$.

- 4. (a) (2 points) Define $\sinh x = \frac{e^x e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$. Prove that $\cosh^2 x \sinh^2 x = 1$ for any $x \in \mathbb{R}$.
 - (b) (3 points) Denote $y = \sinh^{-1} x$. By considering $x = \frac{e^y e^{-y}}{2}$, show that

$$\sinh^{-1}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

for any $x \in \mathbb{R}$.

(c) Consider the curve **catenary** given by the local parametrization

$$\mathbf{r}(t) = (t, \cosh t), \quad t > 0.$$

- (i) (3 points) Compute $\mathbf{r}'(t)$ and $\|\mathbf{r}'(t)\|$.
- (ii) (5 points) Find the arclength parametrization of $\mathbf{r}(t)$. Leave your answer free of sinh and cosh functions.

Harder Part (30 points). Answer ANY TWO questions in this part.

- 5. Denote the transpose of a matrix M by M^T .
 - (a) (5 points) Suppose that $\mathbf{u} \in \mathbb{R}^3$ and A is a 3×3 matrix. Show that

$$\left\| \left(\frac{A + A^T}{2} \right) \mathbf{u} \right\|^2 + \left\| \left(\frac{A - A^T}{2} \right) \mathbf{u} \right\|^2 = \frac{1}{2} \left\| A \mathbf{u} \right\|^2 + \frac{1}{2} \left\| A^T \mathbf{u} \right\|^2.$$

(b) (5 points) Show that if $\left(\frac{A+A^T}{2}\right)^2 \mathbf{u} = \mathbf{0}$ for any $\mathbf{u} \in \mathbb{R}^3$, then

$$A^T \mathbf{u} = -A \mathbf{u}$$
.

- (c) (5 points) Someone claims that if $\left(\frac{A-A^T}{2}\right)^2 \mathbf{v} = \mathbf{0}$ for any $\mathbf{v} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$, then A is symmetric. Is the claim correct? Explain your answer.
- 6. Fix a point $\mathbf{c} \in \mathbb{R}^3$. Suppose $\mathbf{r} : [a, b] \to \mathbb{R}^3$, be a regular *closed* curve, i.e. $\mathbf{r}(a) = \mathbf{r}(b)$, and it is maintaining a non-zero fixed distance from \mathbf{c} for any $a \le t \le b$.
 - (a) (3 points) Describe the shape of $\mathbf{r}(t)$.
 - (b) (i) (3 points) Show that for any a < t < b,

$$\langle \mathbf{r}(t) - \mathbf{c}, \mathbf{r}'(t) \rangle = 0.$$

(ii) (3 points) Someone claims that for any regular curve $\mathbf{s}:[a,b]\to\mathbb{R}^3$ satisfying

$$\langle \mathbf{s}(t) - \mathbf{c}, \mathbf{s}'(t) \rangle = 0$$

for every a < t < b, then $\mathbf{s}(t)$ is a curve maintaining fixed distance from \mathbf{c} . Do you agree? Explain your answer.

- (c) (6 points) Suppose speed and magnitude of acceleration for $\mathbf{r}(t)$ are constant, i.e. $\|\mathbf{r}'(t)\|$ and $\|\mathbf{r}''(t)\|$ are constant. Given that $|\langle \mathbf{a}, \mathbf{b} \rangle|^2 + \|\mathbf{a} \times \mathbf{b}\|^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2$, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ and $\|\mathbf{r}(t) \mathbf{c}\| \|\mathbf{r}''(t)\| > \|\mathbf{r}'(t)\|^2$. Prove that $(\mathbf{r}(t) \mathbf{c}) \times \mathbf{r}''(t) = k\mathbf{r}'(t)$, for some $k \in \mathbb{R} \setminus \{0\}$.
- 7. Consider a curve $\mathbf{r}:(0,1)\to\mathbb{R}^2$ parametrized by

$$\mathbf{r}(t) = \left(t, \sin\left(\frac{1}{t}\right)\right)$$

- (a) (5 points) Is this curve regular? Is this curve parametrized by arc length?
- (b) (2 points) Fix a positive integer k, express $\mathbf{r}\left(\left(2k\pi + \frac{\pi}{2}\right)^{-1}\right)$ and $\mathbf{r}((2k\pi)^{-1})$ in terms of k.
- (c) (8 points) Given that the shortest curve between 2 points on \mathbb{R}^2 is a straight line. By considering the interval

$$I_k$$
 defined by $\left[\left(2k\pi + \frac{\pi}{2}\right)^{-1}, (2k\pi)^{-1}\right]$

for $k = 1, 2, 3 \cdots$, or otherwise, prove that $\mathbf{r}(t)$ has an infinite length over (0, 1).

Bonus Part (15 points). Try your best to answer the question in this part. Good luck.

8. Consider a cycloid in the 2D plane which is parametrized by $(\theta - \sin \theta, 1 - \cos \theta)$ for $\theta \in (0, 2\pi)$. We now put it in \mathbb{R}^3 with z = 0 for all θ such that it lies on the xy-plane, i.e. its new parametrization is $(\theta - \sin \theta, 1 - \cos \theta, 0)$ for $\theta \in (0, 2\pi)$. Now we introduce the 3 basic rotation matrices in \mathbb{R}^3 :

$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$R_y(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

$$R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

which rotate vectors by an angle α about the x-, y-, or z-axis, in three dimensions, using the right-hand rule, by multiplying these matrices to a vector from the left.

(For example, to rotate about the x-axis, using right-hand rule means pointing your thumb towards the direction of x-axis, and the direction of rotation follows your other fingers)

- (a) (2 points) By picking a suitable rotational matrix and angle α , show that a cycloid lying on the xz-plane is parametrized by $\mathbf{r}(\theta) = (\theta \sin \theta, 0, 1 \cos \theta)$.
- (b) (2 points) Find $\mathbf{r}'(\theta)$ and $\|\mathbf{r}'(\theta)\|$.
- (c) (2 points) Find the angle $\varphi(\theta)$ between $\mathbf{e_3} = (0, 0, 1)$ and $\mathbf{r}'(\theta)$ in terms of θ .
- (d) Now also consider a helix parametrized by $(\cos \theta, \sin \theta, \theta)$ for $\theta \in (0, 2\pi)$. Imagine that now the helix rotates around $\mathbf{r}(\theta)$ instead of the z-axis. We will find a parametrization $\gamma(\theta)$ for $\theta \in (0, 2\pi)$ for that new curve in this part. Observe that

$$(\cos \theta, \sin \theta, \theta) = (\cos \theta, \sin \theta, 0) + (0, 0, \theta).$$

The helix is made up of two parts. Given that $\gamma(\theta)$ is also made up of two parts. Let $\mathbf{u}(\theta) = (\cos \theta, \sin \theta, 0)$ for $\theta \in (0, 2\pi)$.

(i) (3 points) Rotate $\mathbf{u}(\theta)$ about the y-axis for angle $\varphi(\theta)$. Let the result be $\mathbf{v}(\theta)$. Show that $\mathbf{v}(\theta)$ satisfies the following property:

$$\langle \mathbf{v}(\theta), \mathbf{r}'(\theta) \rangle = 0$$
 for any $\theta \in (0, 2\pi)$

(ii) (1 point) Given that $\gamma(\theta) = \mathbf{v}(\theta) + \mathbf{r}(\theta)$. Show that $\gamma(\theta)$ satisfy the following:

$$\langle \gamma(\theta) - \mathbf{r}(\theta), \mathbf{r}'(\theta) \rangle = 0.$$

(What is the geometric meaning of this identity?)

(iii) (5 points) Find $\|\gamma'(\theta)\|$. Hence write the arc length of $\gamma(\theta)$ as an integral, no need to solve it.

(Hint: What are the ways to find the norm of a vector?)

In this question, you may need to use double angle formula or product to sum formula, see the next page for reference.

Double Angle Formula

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$= 2\cos^2(x) - 1$$

$$= 1 - 2\sin^2(x)$$

Product to Sum Formula

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$$